M1. (a)		<u>oy change</u> when <u>1 mol</u> of an (ionic) compound/lattice (under standard ditions)	ndard	
		Allow heat energy change	1	
		Is dissociated/broken/separated into its (component) ions	1	
		The ions being in the <u>gaseous</u> state (at infinite separation) <i>Mark independently. Ignore any conditions.</i>	1	
	(b)	There is an <u>attractive</u> force between the <u>nucleus</u> of an O atom and an externa <u>electron.</u> <i>Allow any statement that implies attraction between the</i> <i>nucleus and an electron</i>	1	
	(c)	Mg² (g) + O(g) + 2e- Ignore lack of state symbols Penalise incorrect state symbols	1	
		Mg²⁺(g) + O⁻(g) + e⁻	1	
		Mg²⁺(g) + O²⁻(g)	1	
		First new level for Mg² and O above last on L If levels are not correct allow if steps are in correct order with arrows in the correct direction and correct ∆H values	1	

Next level for Mg²⁺ and O⁻ below that

Next level for Mg²⁺ and O²⁻ above that and also above that for Mg²⁺ and O Allow +124 Allow M4 with incorrect number of electrons

(d) LE MgO = 602 + 150 + 736 + 1450 + 248 - 142 + 844 Note use of 124 instead of 248 CE=0

1

= +3888 kJ mol[₋]1 Allow 1 for –3888 Allow no units Penalise wrong units

1

1

1

1

 (e) Forms a protective layer/barrier of MgO / MgO prevents oxygen attacking Mg Allow activation energy is (very) high Allow reaction (very) slow

(f) $\Delta G = \Delta H - T \Delta S$ $\Delta S = (\Delta H - \Delta G)$ T

 $\Delta S = (-602 - (-570)) \times 1000/298$

- = -107 J K⁻¹ mol⁻¹ / -0.107 kJ K⁻¹ mol⁻¹ If units not correct or missing, lose mark Allow -107 to -108 +107 with correct units scores max 1/3
- (g) 1 mol of solid and 0.5 mol of gas reactants form 1 mol solid products Decrease in number of moles (of gas/species) Allow gas converted into solid

System becomes more ordered Allow consequential provided ΔS is –ve in 1(f) If ΔS is +ve in 1(f) can only score M1

[16]

1

1

1

1

M2.

(a)

- (i) (Enthalpy change for formation of) 1 mol (of CaF₂) from its ions allow heat energy change do not allow energy or wrong formula for CaF₂ penalise 1 mol of ions CE=0 if atoms or elements or molecules mentioned ignore conditions
- ions in the gaseous state ions can be mentioned in M1 to score in M2 allow fluorine ions $Ca^{2*}(g) + 2F^{-}(g) \rightarrow CaF_{2}$ scores M1 and M2
- (ii) (enthalpy change when) 1 mol of gaseous (fluoride) ions (is converted) into aqueous ions / an aqueous solution allow F-(g) → F-(aq) (ignore + aq) do not penalise energy instead of enthalpy allow fluorine ions do not allow F- ions surrounded by water

1

1

(b) water is polar / H on water is δ^+ / is electron deficient / is unshielded

penalise H⁺ on water 1 mark

(F⁻ ions) attract water / ^b+ on H / hydrogen allow H on water forms H-bonds with F⁻ allow fluorine ions (c) $\Delta H = -(-2611) - 1650 + 2x - 506$ ignore cycles *M1* is for numbers and signs correct in expression

= -51 (kJ mol⁻¹) correct answer scores 2 ignore units even if incorrect 1

1

1

M3.		(a)	Enthalpy change for the formation of <u>1 mol</u> of <u>gaseous atoms</u> allow <u>heat energy change</u> for <u>enthalpy change</u>	1
		Fro	om the <u>element</u> (in its standard state) ignore reference to conditions	1
		Ent	halpy change to separate <u>1 mol</u> of an <u>ionic</u> lattice/solid/compound enthalpy change not required but penalise energy	1
		Into	o (its component) <u>gaseous ions</u> mark all points independently	1
	(b)	ΔH	H _L = -ΔH _r + ΔH _a + I.E. + 1/2E(CI-CI) + EA Or correct Born-Haber cycle drawn out	1
		= +4	411 + 109 + 494 + 121 – 364	1
		= +	771 (kJ mol-1) –771 scores 2/3 +892 scores 1/3	

		–51 scores 1/3 –892 scores zero +51 scores zero ignore units	1
(c)	(i)	lons are perfect spheres (or point charges)	1
		<u>Only</u> electrostatic attraction/no covalent interaction mention of molecules/intermolecular forces/covalent bonds CE = 0 allow ionic bonding <u>only</u> If mention of atoms CE = 0 for M2	1
	(ii)	Ionic Allow no covalent character/bonding	1
	(iii)	Ionic with additional covalent bonding	

(111)	Ionic with additional covalent bonding
	Or has covalent character/partially covalent
	Allow mention of polarisation of ions or description of polarisation

[11]

1

M4.		(a)	$CaF_2(s) \rightarrow Ca^{2*}(g) + 2F^{-}(g)$	1
	(b)	(i)	Enthalpy change for formation of 1 mol of substance Allow <u>heat energy change</u> , NOT energy	
				1
			From its elements	1
			Reactants and products/all substances in their standard states	
			Or normal states at 298 K, 1 bar (100 kPa)	1

	(iii)	$\Delta H_{f}(CaF_{2}) = \Delta H_{a}(Ca) + 1st IE(Ca) + 2^{nd} IE(Ca) + BE(F_{2}) + 2 \times EA(F) - \Delta H_{L}(CaF_{2})$ Or labelled diagram	1
		= 193 + 590 + 1150 + 158 + (2 × -348) - 2602 = -1207 kJ mol ⁻¹	1
		Correct answer scores 3 –842 scores 2 (transfer error) –859 scores 1 only (using one E.A.) Units not required, wrong units lose 1 mark	1
(c)		ctrostatic attraction stronger/ionic bonding stronger/attraction veen ions stronger/more energy to separate ions <i>Molecular attraction/atoms/intermolecular forces CE=0</i>	1
	Beca	ause fluoride (ion) smaller than chloride Do not allow F or fluorine	1
(d)	(i)	Δ <i>H</i> = Δ <i>H</i> _L + ΣΔ <i>H</i> _{hyd} = 2237 – 1650 + (2 × –364) Can be on cycle/diagram = –141 kJ mol ⁻¹	1
		Correct answer scores 2 Units not required, wrong units lose 1 mark	1
	(ii)	Decreases If ans to (d)(i) positive allow increases	1
		Reaction exothermic/ΔH –ve <i>If (d)(i) +ve allow endothermic/ΔH + ve</i>	1
		(Equilibrium) shifts to left/backwards (as temperature rises)/equilibrium	

opposes the change If (d) (i) +ve allow shifts to right/forwards/equilibrium opposes the change If no answer to (d) (i) assume –ve Δ H used If effect deduced incorrectly from any Δ H CE = 0 for these 3 marks

1

[17]

 (e) u.v. absorbed: electrons/they move to higher energy (levels)/electrons excited
1
visible light given out: electrons/they fall back down/move to lower energy (levels)
Must refer to absorbing u.v. NOT visible light or this must be implied.